1 Development of Geopolymers for Application on Mars

2	Emilee Z Chen ¹
3	¹ TU Delft (The Netherlands)
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Abstract. Geopolymers have emerged as a promising material option for in-situ construction on Mars due to their inherent material properties and availability of raw materials across the globally consistent basaltic composition of Martian regolith (Fackrell et al., 2021). This review presents the current state-of-the-art geopolymer research, which primarily investigates the various base compositions of geopolymers, factors influencing the Geopolymerization process. These investigations encompass considerations such as binders, water availability, energy sources, aggregate options, properties of fresh materials, structural requirements, and durability concerns (Reches, 2019), which encompass both compression and flexural strength assess- ments, pivotal for evaluating the efficacy of geopolymer materials in Martian conditions. The subsequent research aims to extend current understanding by conducting experiments and test- ing real-scale prototypes in controlled environments, including the collection of volcanic ash from Sicily to simulate Martian basalt soil. Further testing with 1:1 scale aggregates and fibers will be crucial to optimize the composition ratio, while material characterization will provide insights into enhancing the performance and durability of geopolymers in extraterrestrial envi- ronments. This approach aims to contribute to the development of resource-efficient construc- tion practices through working prototypes and material characterization for future Martian exploration and habitation.
21	Keywords: In-situ resources; Geopolymer; 3D Printing; Off-earth habitats;
22	References
23 24 25 26 27 28 29 30 31 32 33 24	 S. Ma et al., "3D Printing of Damage-tolerant Martian Regolith Simulant-based Geopolymer Composites," Additive Manufacturing, vol. 58, p. 103025, Oct. 2022, doi: 10.1016/j.addma.2022.103025. R. Hedayati and V. Stulova, "3D Printing of Habitats on Mars: Effects of Low Temperature and Pressure," Materials, vol. 16, no. 14, p. 5175, Jul. 2023, doi: 10.3390/ma16145175. K. Korniejenko, K. Pławecka, and B. Kozub, "An Overview for Modern Energy-Efficient Solutions for Lunar and Martian Habitats Made Based on Geopolymers Composites and 3D Printing Technology," Energies, vol. 15, no. 24, p. 9322, Dec. 2022, doi: 10.3390/en15249322. Y. Reches, "Concrete on Mars: Options, challenges, and solutions for binder-based construction on the Red Planet," Cement and Concrete Composites, vol. 104, p. 103349, Nov. 2010, 10.1016/j.
34 35 36 37 38	 2019, doi: 10.1016/j.cemconcomp.2019.103349. 5.L. E. Fackrell, P. A. Schroeder, A. Thompson, K. Stockstill-Cahill, and C. A. Hibbitts, "Development of martian regolith and bedrock simulants: Potential and limitations of mar- tian regolith as an in-situ resource," Icarus, vol. 354, p. 114055, Jan. 2021, doi: 10.1016/j.icarus.2020.114055.
39 40 41 42 43 44	 6.C. Montes et al., "Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications," Advances in Space Research, vol. 56, no. 6, pp. 1212–1221, Sep. 2015, doi: 10.1016/j.asr.2015.05.044. 7.A. Alexiadis, F. Alberini, and M. E. Meyer, "Geopolymers from lunar and Martian soil simulants," Advances in Space Research, vol. 59, no. 1, pp. 490–495, Jan. 2017, doi: 10.1016/j.asr.2016.10.003.
45 46 47 48	 J. N. Y. Djobo, A. Elimbi, H. K. Tchakouté, and S. Kumar, "Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives," <i>Environ Sci Pollut Res</i>, vol. 24, no. 5, pp. 4433–4446, Feb. 2017, doi: 10.1007/s11356-016-8230-8. Wang et al. "In give utilization of negative resource and future current in a folditive explorement."

9.Y. Wang et al., "In-situ utilization of regolith resource and future exploration of additive
manufacturing for lunar/martian habitats: A review," Applied Clay Science, vol. 229, p.
106673, Nov. 2022, doi: 10.1016/j.clay.2022.106673.

2 51 10. H. K. Tchakoute, A. Elimbi, E. Yanne, and C. N. Djangang, "Utilization of volcanic ashes 52 for the production of geopolymers cured at ambient temperature," Cement and Concrete 53 Composites, vol. 38, pp. 75-81, Apr. 2013, doi: 10.1016/j.cemconcomp.2013.03.010. 54 11. Nazneen, S. C. Daggubati, and V. Lakshminarayana, "GEOPOLYMER A POTENTIAL 55 ALTERNATIVE BINDER FOR THE SUSTAINABLEDEVELOPMENT OF CON-56 CRETE WITHOUT ORDINARY PORTLAND CEMENT," Journal of industrial pollu-57 tion control, 2017, Accessed: Mar. 06, 2024. [Online]. Available: 58 https://www.semanticscholar.org/paper/GEOPOLYMER-A-POTENTIAL-59 ALTERNATIVE-BINDER-FOR-THE-Nazneen-60 Daggubati/b1095cd5b0f0354e254a7498138327d64960a4a5 12. J. Davidovits, "Geopolymer Cement a review", Geopolymer Science and Technics, Tech-61 nical Paper #21, 2013, Geopolymer Institute Library, www.geopolymer.org. 62